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Suspended gate field effect transistor with electrodeposited

palladium responds reversibly to hydrogen in the range of 3 ppm to 105

ppm. The mechanism of this response includes both the surface and the

bulk effect of hydrogen on the electron work function of palladium.
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Abstrc

A suspended metal gate field effect transistor was studied as a

hydrogen sensor and the surface processes at an electrochemically

deposited Pd layer on the gate were examined. It has been found that the

time constant as well as the magnitude of the response depends on the

operating conditions particularly on the presence of oxygen. If the device

is tested in air the dynamic range spans logarithmically five decades of

partial pressure of hydrogen.
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Introduction.

Since the first report of palladium metal oxide field effect transistor

(PdMOSFET) for use as hydrogen sensors appeared in 1975,1 there has been

a growing interest in the analytical use of the palladium hydrogen system.

The resulting sensors have taken the form of transistors 1 , Schottky

diodes, 2,3 and capacitors4 . Although most of those sensors respond to

hydrogen, some have been modified to detect other electrically neutral p

compounds. This is the focus of the more recent research, which should

ultimately lead to multicompound sensors. Such devices have already

been developed for ionic species and the methods of data acquisition and .-

interpretation have been described 5. A complete review of the operation

of chemically sensitive field effect transistors has been published

recently6 . The properties and description of Pd MOS structures have been
7-9e

reviewed 7 9 as well as the fundamental properties of the palladium U,

hydrogen system 10-15 -..

Suspended gate field effect transistor (SGFET) is a generic structure

which can be made chemically selective for different compounds by

deposition of different layers on the suspended metal gate. This has been b

.4,t--,
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already demonstrated by electrochemically coating the suspended gate

with polypyrrole for use as an alcohol sensor 6,1 The source of the

signal in Pd MOSFET has been the subject of much interest 7,8. According

to the present model, the hydrogen is adsorbed on the palladium surface

(following a Langmuir isotherm at higher concentrations ) where it

dissociates and diffuses through the bulk palladium to the Pd/SiO 2

interface. The resulting layer of hydrogen dipoles induces a potential drop

at this interface. Studies of changes of Pd work function and of the Pd

surface potential [8] have shown that this process is dominated by the

changes of the dipole potential at the Pd/insulator interface 1 8 ,1 9 .

The exact mechanism of surface interaction between hydrogen and

palladium is still under investigation, primarily by UHV techniques. A

general outline of this mechanism is as follows: In inert atmosphere the

hydrogen can adsorb in twc forms. The first is a strongly bound form 14 (r

type adsorption ) present at low coverages or at low temperatures. The H

atom is situated directly above the Pd atom at the surface. The second is ,-

a weakly chemisorbed form (s type adsorption) where the hydrogen is

situated in between the Pd atoms in the surface. The latter form which

="5-



K 07 TW It. W-

4

occurs at high surface coverage is in rapid equilibrium with the bulk

hydrogen and can be easily removed under vacuum. The r type adsorbed

hydrogen, on the other hand, cannot be removed under vacuum at room

temperature 0. At room temperature the saturation of the metal occurs

at a hydrogen to palladium ratio of 0.6. At this point the d bands of the

metal are filled and the protons are completely dissolved in the metal.

Thus, the paramagnetic susceptibility has been found to be zero 10. In this

situation the Fermi level of the metal is shifted to higher energies and the

surface potential increases 21. Since the hydrogen is dissolved in the

metal, the lattice is strained. The resulting change in dimensions has

been used as a means for sensing hydrogen2 2 and has also been examined

by X-ray studies2 3 .

Some physical properties of the Pd MOSFET have yet to be fully N

explained, however, the detection of less than 10 ppm of hydrogen is

routinely possible24 26 in relatively short times.

For the detection of hydrogen at a Pd MOSFET whose surface has been

oxidized the hydrogen does not reach the bulk until the surface palladium

oxide has been reduced to the metal 18. Hydrogen-containing neutral

I-
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molecules such as H2 S 27,28, NH3 29 and hydrocarbons3 0 can be detected

at palladium surfaces if the sensitivity is enhanced by thin coatings of

other metals such as Ir and Rh.

The design of the present device 31 may be viewed as a logical -

progression from the Pd MOSFET discussed above, although its mode of

operation is substantially different. It is an advance over the porous Pd
A

gate 8,32, the cantilevered gate 33, and the Pd MOSFET with deliberately p

etched holes 34.36 Conducting polymers such as polypyrrole, which has

been found to be sensitive to NH3 3 ,have been electrochemically

deposited on the suspended gate 16 '17

The composition of the solid insulator is quite important; The layer of

SiO 2 cannot be contaminated since it is protected by a layer of inert Si3N4

which has been shown to be impervious to hydrogen 38 . Thus, the hydrogen -

spillover39 ,4 0 leading to so called "hydrogen induced drift" is not

expected to occur in devices covered with silicon nitride.

W
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EXPERMENTA

The preparation of the basic device has been detailed in a previous

publication3 1 . The distance from the mesh to the substrate is on the order

of 1000 A. The substrate insulator is composed of a layer of Si 3 N4 (800

A) on top of a layer of SiO2 (800 A). After the devices were scribed they

were bonded to a TO-4 header by heating to -400 0 C at which temperature

a Si/Au eutectic is formed, providing excellent electrical contact. The

devices were then wirebonded using an ultrasonic wirebonder ( Tempress

Model C series 1713) and finally encapsulated with epoxy to protect the [

aluminium wires. For low temperatures, Epon 825 (E.V.Roberts, 8500

Steller Dr., Culver city, CA 90230) and Jeffamine D-230 (Texaco P.O.Box

430, Bellaire, TX 77401 ) were used and at high temperatures Epotek H77

(Epoxytek Inc.,14 Fortune Dr., P.O Box 567, Billarica, MA 01821 ) was

used. In each case fumed silica (Cab-o-sil,Cabot Corp., Tuscola, IL 61953)

was used as a thixotropic agent. After encapsulation, the Pt mesh was

connected as a working electrode in a two electrode system with Pt wire

as the counter electrode. The deposition was done from the solution of

p'i

3. a N
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0.3M PdCI2 in 0.5 M NH4 CI acidified to pH 1 with HCI 41-43. A series of

current pulses (i = 800 pA/cm2 , pulse width 10 ms ) was applied to the

mesh in order to deposit a total of 0.8 micromoles of Pd corresponding to

an average thickness of 100 A. It was found that at low current densities

(20 pIA/cm 2 ), the deposited metal consisted of grains of amorphous Pd

black. At higher current densities ( >900 giA/cm 2 ) a shiny deposit was

obtained. An inherent disadvantage of this method of deposition is the lack

of control of the potential at the working electrode. Concomitant

| evolution of hydrogen which could cause a phase transition could

therefore not be excluded.

The testing system consisted of a Carle Gas Chromatograph (model

211 c) which was adapted to accomodate a FET transistor as described

previously 17. A separate heating tape was used to control the

temperature of the FET detector block. The transistor current was

controlled by means of a feedback circuit 6,44. Gases were used as

received from Liquid Air Corporation (Geneva Rd.,Orem, Utah) and were

calibrated against standards ( Ideal Gases Ltd. 977, New Durham Rd.,

P.O.Box 807, Edison , NJ 08878). Deposition of Pb was carried out from a

" ,. ", "
" ,-A '"Z " .. . . """ """"""" """. , ' . ' .. - ' ... ' -. , ° . ." .
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fluoroborate bath 41 and Zn was deposited from a cyanide bath 45. The
The. ,,.,

effect of the deposition of these metals on the H2 response was examined.
.5:

RESULTS AND DISCUSSON It

Figure 1 shows a plot of the source to drain current Id against gate

voltage Vg . The drain to source voltage Vd was 1 V and the scan rate was

100 mV/sec. The Vg/ld curve was recorded on a Hewlett Packard

semiconductor parameter analyzer (model 4145 A) interfaced to a HP •

9872C plotter. The SGFET (curve2) and the Pd SGFET (curve 3) are 'AS

compared to the response of a MOSFET on a similar chip. As expected for

the SGFET the current is lower. The equation for the characteristic curve

for a MOSFET operated in saturation is

ne C0 W

Id = (Vg VT) 2  (1)
2L

where VT is the threshold voltage , C0 ' is the gate capacitance. W and L

.-.S

!
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are the gate width and length respectively, and ne is the electron

mobility . This equation applies to the SGFET when an air-gap capacitance

G is placed in series with the solid insulator gate capacitance CO

yielding overall capacitance:

CO-- CGC0/(CG+Co) (2)

Because CG is a reciprocal function of the thickness of the air gap it

follows that as the thickness decreases, the capacitance and the current

increases . The threshold voltage becomes more negative since it is

related to Co and to the work function difference between the dposite

metal and the semiconductor. The downward bending of the experimental

WS

Id - Vg curves seen in Fig.1 is due to the presence of series resistance in

the N-diffusions in the transistor chip [46].

The kinetic experiments consisted of examining the response for

concentration steps from a background to a certain concentration of H2 .

Both the rising and falling transients were studied (Figure 2). The

"Sn

~ ~'" ~ % % ~. -. % 5
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response of the thermal conductivity detector (T.C.D.) in parallel with the

FET detector showed that the concentration step itself had a very short

rise time and that the slow rise time in the case of the FET was due to the

slow kinetics at the surface. In Figure 3 a function related to a first order

process ln(A/x), where A and x are defined in Figure 2, is plotted against

time as a function of temperature. The first order process is dominant

only for low concentrations on the rising part of the transient. The slope

is seen to increase with temperature and a rate equation of the following

general type can be formulated for the slowest step of the process 1:

rate = (1-e) 2 K1 exp (-2E 1 /RT) (3)

where e is the fraction of occupied sites, which in the case of small

concentrations is small enough for the first term in Eq.(3) to be ignored.

E1 represents the activation energy for chemisorption 11 and is shown in

Figure 4. In this Figure the potential energy of the s type adsorbed

hydrogen atom is shown for the most stable position is 0.5 A below the

surface of the metal 14. The constant K1 is the flux of the species to the

surface and includes a term for the sticking coefficient.

A A~
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If the s type hydrogen is present there is an immediate rapid

equilibrium formed with the bulk of the metal and the alpha hydride is

formed. According to some authors the signal is derived from this phase

transition4 . A first approximation proposed by Lundstrom 4 7 which is

based on the relationship between the gate potential and the dipole

moment created by the adsorbed hydrogen does not correlate well with the

response of our devices.

The effect of the ratio of bulk to surface states has been observed by

thermal desorption studies of palladium powder, foil and wire. In the

case of the wire the diffusion from the bulk is limiting but the model is

complex due to a moving phase boundary and no simple solution has been

found 48.

At higher concentrations, on the rising transient, the situation is

more complicated ( Figure 5). For a set of temperatures, at longer times,

the curves tend toward a constant slope independent of temperature. The

deviation at short times might be due to the change in the type of hydrogen

occupied sites e. At longer times the process is limited by diffusion from

the surface into the bulk where the rate for this process is given by i

lp

*1



Q
12

rate = e K2 exp(-E2/RT) (5)

where e -1 and E2 is the activation energy for the transport of hydrogen

from the surface into the bulk. For the s type adsorbed hydrogen this is a

relatively small barrier. The rising transient due to the exposure to

hydrogen may therefore be characterized by two limiting processes. In

Figure 6 the log of the rate constant as determined from the slopes of the

graphs in Figure 3, is plotted against inverse temperature . This slope

yields an estimate for the value of E1 (-5.7 Kcal/mole) which compares

well with that of Auer and Grabke 49 (-6.8 Kcal/mole ). Their resistance

measurements were made under conditions of reduced pressure and with

metal foil whereas these particular measurements were made at a Pt

mesh electrochemically coated with a thin (on the order of 50-100 A)

layer of Pd.

The case of the falling transient (step-down in concentration) is

depicted in Figure 7 where the term In(A/x) related to a first order

process is again plotted against time. At short times a straight line

%"' ,,.% % . \. * . .4
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behavior is observed indicating that when e=1 the following rate law

holds:

rate - e2 K3 exp(-2 E3 /RT) (6)

where the hydrogen is leaving as H2 and the barrier for removal at the

surface is E3 . At short times the surface is saturated and the hydrogen

leaves with an apparent first order rate. At longer times, however, the

desorption is determined by a combination of the above process and the

diffusion from the bulk:

rate = (1-e)X K4 exp(-E4/RT) (7)

where X is the atomic fraction of the atoms in the bulk and E4 is the

energy required to reach the surface from the bulk. The hydrogen

desorption is very sensitive to pressure changes and an increase in

pressure slows down the desorption drastically. It can be seen from

Figures 5 and 7, at long times, that the lines whose slopes are independent
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of temperature indicate that the process dictating diffusion into the bulk

is qualitatively similar to that governing diffusion from the bulk. Because

of the relative uncertainty of measuring the response at long times, no

quantitative data can be obtained under these conditions.

The overall response of our transistor takes the form of a negative

shift in VT which has also been seen by Lundstrom 7. The source of the

signal, in our case, is the lowering of the electron work function of P

palladium. As long as the contact Pd/Pt is ohmic there should be no

contribution from the possible change of the work function of the platinum

layer [17]. The basic requirement for analytical use of these devices

involves the characterization and regeneration of the original surface. The

exposure to hydrogen is seen to be more "reversible" 26 in a carrier gas

containing oxygen, than in an inert gas. However, on exposure to oxygen

over long times at high temperatures the sensing surface is oxidized.

There have been few explicit results in the literature about the response

time for the hydrogen palladium systems. LeRoy 9 reports a rise and fall 9
5-.

time of approximately 5 minutes for 50 ppm hydrogen in air at 1500C and ""- -

a response of 100 mV. The speed and magnitude of the response of the

'.,
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sensor described herein is faster and higher, as expected, because of the

ease of entry of the sample into the sensor. However, the same problems

of irreversible penetration of hydrogen into the metal on first exposure in

an inert gas are experienced as described by others 7.

A typical response for exposure to 100 ppm H2 is shown in Figure 8

for two carrier gases nitrogen and air. It is seen that the response in air

is different both with respect to magnitude and characteristic shape from

that in nitrogen. It appears that oxygen is irreversibly bound to the

surface of the palladium even in the presence of hydrogen. Switching the

carrier from nitrogen to air returns the response to the original baseline.

The presence of oxygen in this case appears to clean up the surface and

strip off any residual hydrogen. Thus the order of exposure of the device

to oxygen and hydrogen is important; if the oxygen reaches the surface

first it sticks even in the presence of hydrogen. If, on the other hand, the

surface is first covered with hydrogen, then the oxygen appears to strip it

off. There is no response on switching from nitrogen to air, a result which

is contrary to that previously reported for Pd MOSFET 1.

The optimum operating temperature for the Pd SGFET with respect to
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the time response was determined to be 140 0 C. When air is used as a

carrier the rising part of the transient is much slower. The sensor was

stable at 1000C under a flow of air for 24 hours and after a regeneration

with 100 ppm of H2 the same response was obtained as before (the

regeneration took the form of a more slowly rising transient). The change

of the threshold voltage AVT as a function of hydrogen concentration in air

and in nitrogen is shown in Fig. 9. The slope of the response in nitrogen

between 100 ppm and 105 ppm is reproducible and linear ( 80 + 9 mV, at

1400 C). On the other hand the response in air is lower but uniform over

the whole range from 0 to 105 ppm. The slope is strongly affected by the

state of the platinum surface before the deposition and by the palladium

electrodeposition conditions. These effects require further study.

Preliminary investigation of the deposition of other metals has been

carried out. The response to the step-change of hydrogen concentration in

nitrogen from 0 to 100 ppm, for layers of Pb, Zn, and bare Pt were 20,50,

and 190 mV as compared to 800 mV for Pd. Because hydrogen has a very

high overpotential on Pb it is not expected that this metal would produce a
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hydrogen response. It is possible that the small signal obtained with Pb

coated SGFET could be due to adsorption of hydrogen at the silicon

oxynitride surface of the gate gap. These effects also require further

study.

Although the Pd MOSFET is the closest relative of the Pd SGFET the

fundamental difference between the operation of these two types of

devices has its origin in their different structure. In the former, hydrogen

enters the device through the outside Pd surface, diffuses through the

bulk and creates the dipole at the Si0 2/Pd interface. It is this dipole

which, according to the present theory 8, dominates the signal. On the

other hand in the SGFET the gas enters the gate gap and interacts with the

inside Pd surface and then diffuses into the bulk. In this case the surface

rather than interface potential is involved in the response [50]. Because

the response extends over a wide range of concentrations (10 - 100,000

ppm) it is probable the the bulk of Pd is also involved. This could happen

either through the direct modulation of the bulk term of the work function

a . .. ... ,;.....,.,,:. , , . . _._. ,.,,.,- ,,.,., ., . ., . .,....-.
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(at high concentrations) or through the bulk effect on the surface a

equilibria. Further study is required to elucidate this point.

Because all processes involved in the response are consecutive and

have different time constants the time response of the signal cannot be

modeled by a single time exponential (Figures 5,7,8). Furthermce, the

presence of oxygen seems to affect profoundly both the the time -.onstant

and the absolute magnitude of the signal (Fig. 9). In nitrogen at low

concentrations (< 10 ppm) both the rise and the recovery are slow but the

magnitude of the response is very high. The preliminary data show that in

air the signal is logarithmic over the whole range but the slope is strongly

dependent on the palladium deposition conditions.

eU.

N..
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Figure 1. lDs - VG curves for 1: MOSFET, 2: Pt SGFET ,3: Pd SGFET,

(60 g.C). In all cases the VD was 1V.

Figure 2. Concentration step of 1% H2/N2 injected into a background of

air, T=1 120 C. Flow rate is 30 mLfmin

Figure 3. Representation of the results in terms of a first order

parameter "In (Aix)". Step change from 0 to 3ppm of H2 . The

flow rate was 30 mUmin, the increasing slopes correspond to

temperatures () 110°,() 1280,(#) 1350, and ( 1400C,

respectively.

Figure 4. Schematic representation of the potential energy of a hydrogen

atom in contact with palladium. E1 is the energy of

chemisorption , E3 is the energy required for two H atoms to

associate and leave the surface, E5 is the energy required for

..

-. ,. .. ., ..... ,. . .. .... d . . _.. . .3. .:- . .. . -. .. , .. .... *.-. .. .. ,*.. .. .... -- .-.. . . ..-.-...-.. .. ,. . .. .- . : - .- .. .. , .. , - -
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the H to get into the bulk and E4 is the energy to leave the bulk.

Figure 5. First order kinetics representation of a rising transient for

exposure to 10% H2 in N2 . The temperatures are (from top to

bottom) () 1100,) 900, (m) 700,0) 400 ,and (A) 300 C.

Figure 6. Arrhenius plot of the rate constants found from the slopes of

the curves in Figure 3, against inverse temperature .The

concentration is 3 ppm and the rate constants are in sec "1 and

the temperature in OK.

Figure 7. First order representation of a falling transient for 1 % H2 /N2

concentration step. The increasing slopes are for temperatures

of $) 900,) 1000, and (0) 1200 C, respectively.The three

regions in the figure are discussed in the text.

Figure 8. A typical response for step change from 0 to 100 ppm hydrogen

in nitrogen and air. The arrows indicate the sample injections

,:..
o!

0q



Increasing time is from left to right.

Figure 9. A typical plot of the change of threshold voltage AVT against .

hydrogen concentration in air and in nitrogen. The operating -

temperature was 140°C.
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